
EECS 498 : Game Engine Architecture

Winter 2024 Mid-Semester Exam
By Austin Yarger - University of Michigan (ayarger@umich.edu)

1

Topic Score

Game Engine Landscape, History & Misc / 40

C++ and IDE Pragmatics / 20

Lua and Composition / 20

Engine Architecture and Lifecycle Functions / 20

Total / 100

Total (canvas normalized) / 250

Rookie, we’ve completed some questions for you.
Be efficient with your time, and good luck out there.

name / signature

uniqname

date

Hey! Do your best with no regrets!
Your path is a difficult one– don’t forget that.

Good evening. Before we begin, please repeat after me.
“I have neither given nor received unauthorized aid on this

examination, nor have I concealed any violations of the honor code.”

2

Helpful Engine Lua API Functions
Audio.Play(int channel, string clip_name, bool does_loop)
Text.Draw(string content, int x, int y, font_name, font_size, int r, int g, int b, int a)
Application.GetFrame() – Returns the current frame as an integer.
Image.DrawUI(string image_name, int x, int y) – Draw an image at (x,y) in screen space.
Input.GetKeyDown(key) – Returns bool if the key was pressed down this frame.
Actor.FindAll(string name) – Returns a table of all actor references with a name.
Actor.Find(string name) – Returns a single actor reference by name.
Debug.Log(message) – Prints a message string to the screen.
Application.Quit() – Quits the application immediately.
actor_ref:GetComponent(ComponentTypeName) – Get reference to component.
Image.Draw(image_name, int x, int y) – Draws image in scene space (x,y) (note : no floats)

Helpful Common Lua Functions
math.abs(number) -- Returns absolute value of “number”
table.insert (my_table, thing_to_add) – Adds a thing to a table at the very end.
table.remove(my_table, index_to_remove) -- Removes the item at “index_to_remove”

Helpful Lua Techniques
for index, value in ipairs(table) do <logic_here> end – iterating through a table w/ index.
for i = #my_table, 1, -1 do <logic_here> end – Iterating backwards through a table.
some_number % 2 == 0 – using modulo to check if some number is even.

Helpful C++ / Pseudocode Techniques
LuaRef my_function = component_luaref[“my_function”]; // Get a function on lua component
my_function(component_luaref); // call it and send in a reference to “self” (member function).

/* Iterate through a map */
std::map<std::string, luabridge::LuaRef> components;
for (auto & pair : components)
{

std::cout << pair.first << std::endl; // access the string (the key).
LuaRef actual_component = pair.second; // access the component (the value).

}

Characters

Glossary

Spot Donna

this : a pointer to the
current object

3

1
Game engines borrow their terminology from the realm of theater, including
“actor” to represent “things”, “script” to represent modular, attachable logic, and
__________ to represent a collection of actors. (circle one below)

scene template book rehearsal package prop

2
In modern times, two off-the-shelf game engines stand above the rest with
significant advantages in popularity, community, and featureset, to the point
where many call the situation a “duopoly”. Which are they? (circle two below)

Source Love2D Unity PyGame Unreal CryEngine

3
Off-the-shelf engines are extraordinarily popular, but some studios refuse to
indulge. Why might a studio use an in-house engine? (circle two below)

Avoid
royalties

Reduced dev
time / cost

Full
agency

Large
community

Easier
hiring

4
OOP-based component architectures are very common in today’s most popular
engines. Name a significant weakness of this style. (circle one below)

Cache
Utilization Logic re-use Runtime

flexibility

__/1

__/1

__/1

__/1

5
Open-source software is awash with licenses restricting how software may be
used. Which one requires you release your source-code? (scary!) (circle one)

MIT BSD__/1

6
Unity was not the first off-the-shelf engine, but it did change engine access
forever. In earlier eras, how did one typically acquire an engine? (circle two)

Create it
yourself

Massive
up-front

license fees

Minor royalties
owed

__/1

7
In the eternal chase for performance, some engines have been forgoing
traditional object-oriented programming in favor of (circle one below)

Static-Oriented
programming

Data-Oriented
Programming

Imperative
Programming

__/1

GPL APACHE

Download
for free

Declarative
Programming

Game Engine Landscape, History & Misc

4

8
Match each term below with its single most-reasonable definition at the
bottom of the page. Do so by drawing a line between two boxes. Each term
matches exactly one definition. There will be nine lines total.

Spr
ite

Coll
ide

r

M
od

Kon
am

i C
od

e

Te
xt

Adv
en

tu
re

std
::s

ha
red

_p
tr

Tr
igg

er
b2

W
or

ld

Lu
a

Smart Pointer

A scripting language

A shape enabling physical collision on an actor

A visual representation of something

Created to help Q&A teams work faster

A shape enabling collision detection without physical impact

A prominent genre in the early days of computing.

Typically created by a game’s community, rather than its original authors.

Box2D
simulation

__/9

Game Engine Landscape, History & Misc

Too easy…
Let’s gooo!

5

9
Match each term below with its single most-reasonable definition at the
bottom of the page. Do so by drawing a line between two boxes. Each term
matches exactly one definition. There will be eight lines total.

God
ot

PIC
O-8

Lo
ve

2D

PyG
am

e

Gam
e M

ak
er

M
on

oG
am

e

M
IT Scra

tch

Unr
ea

l

Python-based

C# Engine of Celeste (‘18)

Web-based with “code-block” scripting for education

Minimalist 2D with Lua scripting

All games limited to 128x128 pixels

Industry-grade / Used in film production (The Mandalorian)

Open-source, MIT-licensed rival to Unity

Drag-and-Drop-based engine of UnderTale (2015)

__/8

Game Engine Landscape, History & Misc

6

10
Match each term below with its single most-reasonable definition at the
bottom of the page. Do so by drawing a line between two boxes. Each term
matches exactly one definition. There will be eight lines total.

M
UGEN

Id
Te

ch
 1

Crys
tal

 To
ols

Fr
os

tb
ite

Sou
rce

 Eng
ine

Ren
’Py

UbiA
rt

RPG M
ak

er

Visual Novels

Made at UMich

All-in-one package for 2D artists and animators

Physics-heavy Half-Life 2 Engine

Difficult for anything but RPGs

Powered the original Doom with “fake” / “2D” 3D effects.

Proprietary Final Fantasy engine that kept artists / content producers waiting

First-Person Shooter / Destruction Engine that EA attempted to employ for other genres

__/8

Game Engine Landscape, History & Misc

7

11
Match each term below with its single most-reasonable definition at the
bottom of the page. Do so by drawing a line between two boxes. Each term
matches exactly one definition. There will be eight lines total.

Ren
de

rW
are

Retr
o E

ng
ine

Step
M

an
ia

Blen
de

r G
.E.

Twine

Rob
lox

Legos for kids

Open-Source DDR Engine

Zero-code engine for hypertext stories

Failed post corporate buyout

GPL-licensed, so few businesses will use it

All-in-one 2D vector art and animation tool. Crushed by

Bethesda engine with quality support for mods and large open worlds

Used initially for fangames. The IP holder eventually hired those fans outright.

Crea
tio

n E
ng

ine
Ado

be
 Fl

as
h

__/8

Game Engine Landscape, History & Misc

8

13
Your engine begins to run and things look promising until suddenly you
witness the following error. What kind of issue is it? (circle one below)

Compilation
issue

__/2
Linker
issue

Dynamic Linker
issue

15 Consider the following filesystem structure–

__/4

And the following includes within main.cpp–

12
During a build and run of your engine, you witness the following error occur a
few moments into the build. What kind of issue is it? (circle one below)

Compilation
issue

__/2

Linker
issue

Dynamic Linker
issue

14
During a build and run of your engine, an issue appears almost immediately
after clicking the build and run button. What kind of issue is it? (circle one)

Compilation
issue

__/2

Linker
issue

Dynamic Linker
issue

my_project/ my_project/third_party/

C++ and IDE Pragmatics

17
Consider the following object-oriented c++ script meant to calculate the
damage taken by a collection of Characters (only the defense stat is used).

__/6

16
You wish to provide engine-level support for tracking of actor-associated
network ID ints. Users need fast lookup but no ordering. Which data structure
best meets these requirements? (circle one below)

std::vector<std::pair<Actor*, int>>

__/2 std::unordered_map<Actor*, int>std::map<Actor*, int>std::vector<int>

std::set<int>std::unordered_set<int>

Write two include / header paths below that allow for successful compilation
without changing the source code of main.cpp. One has been done for you.
Note : You may use VS or XCode syntax.

On the next page, re-write this script to speed it up (improve cache utilization).

● Consider changing how Characters are represented in memory, but keep
all the stats above (“hp”, “def”, etc must exist in some fashion).

● The program output / calculation should be the same as above.
● If you create an array(s), you may assume it get “filled up” elsewhere.
● You may assume num_chars is the number of entities in the program.

C++ and IDE Pragmatics

$(ProjectDir)

10

int num_chars; // "automatically" gets set to the number of characters.

int main()
{

return 0;
}

18

__/2

A rival to object-oriented programming, the act of focusing on “Objects of
Arrays” rather than “Arrays of Objects” (ie, focusing on runtime-efficient data
layout) is referred to as (write below)–

C++ and IDE Pragmatics

11

19
Quarter Muncher
The business model of 90s-era arcade cabinets incentivized game creators to
design difficult gameplay capable of extracting quarters from players every 5 or
so minutes. In an effort to coax players into trying again (ie, spend more money),
they created dramatic “continue screens” to incentivize continuation.

Example : arcade-style continue countdown Retry selected Countdown expired

Objective
Write a Lua component to power a basic arcade-style continue countdown screen.
Note : If a requirement is ambiguous, it is your choice (different solutions may be valid).
Note : Use the glossary at the front of this exam for a reminder of Lua functions / stuff.

Requirements
☐ Write your Lua component in the box on the following page.
☐ Component must be valid Lua code.
☐ Component makes use of several Lua lifecycle functions from lecture / homeworks.
☐ Component immediately plays looping audio file called “continue” (continue.wav)
☐ Every frame, draw a countdown number text at (500, 100) with font “default” and size 50.

☐ Countdown begins at “9” and decreases by one approximately every 60 frames.
☐ Every frame, Image.DrawUI() Spot at (100,100) using pose based on countdown state.

☐ If countdown is > 0, draw “spot_continue” image (her standing pose)
☐ If countdown is <= 0, draw “spot_giveup” image (her sitting pose)
☐ If player has pressed spacebar to continue, draw “spot_retry” image (happy pose)

☐ Every frame, draw a “Continue?” text at (500,20) with size 16
☐ If player presses “space” before countdown reaches 0, the countdown halts, all text
disappears, and spot enters “spot_retry” pose. Component continues on like this forever.
☐ If countdown reaches “0”, the countdown halts, all other text disappears, and “GAME
OVER!” text renders at (500, 100). Spot renders in her “spot_giveup” pose. It becomes
impossible to press “space” to continue. Component continues on like this forever.
☐ Component avoids polluting the global lua state, creating local / table variables only.

__/10

Lua and Composition

12

ContinueCountdown = {

}

resources/component_types/ContinueCountdown.lua

Lua and Composition

13

20
100m Dash
A popular contest throughout the world, the 100-meter dash sees athletes
sprinting at top speed from a starting line to a finish line. The first to travel 100
meters is declared the victor, while those who violate lane integrity (step out of
their lane) are disqualified.

Each contestant must stay within a lane.

Objective
Write a Lua component to referee (judge) a basic 100-meter dash race.
Note : If a requirement is ambiguous, it is your choice (different solutions may be valid).
Note : Use the glossary at the front of this exam for a reminder of Lua functions / stuff.

Requirements
☐ Write your Lua component in the box on the following page.
☐ Component must be valid Lua code.
☐ Component makes use of several Lua lifecycle functions from lecture / homeworks.
☐ You may assume multiple actors exist within the scene with the name “runner”

(no actors will be instantiated or destroyed during runtime)
☐ You may assume each runner actor has a Transform component with “.x” and “.y”

(other components in the game will update these values to make the runners move).
☐ The race does not begin (no update logic) until global variable “go” is true (it begins false).

(a different component in the game will set it to true. Until then, it will be false).
☐ At the very end of every frame (after all other components have had a chance to run),
check each runner‘s .x and .y position in the order returned by an Actor.FindAll() call.

☐ Note : All other components in the codebase use OnUpdate() for their logic.
☐ If any runner has a .x >= 100, declare them the winner (via Debug.Log()) and then

Application.Quit() immediately. Assume each runner begins at .x = 0 (the start line).
☐ If any runner has a .y that is more than 0.5 away from their index in the table

returned by Actor.FindAll(), declare that runner disqualified (Debug.Log()) and never check
them again (careful– altering a container while iterating through it can lead to bugs).
☐ Component avoids polluting the global lua state, creating local / table variables only.

__/10

First runner past 100m wins.

Lua and Composition

14

DashReferee = {

}

resources/component_types/DashReferee.lua

Lua and Composition

21
A game designer has used your engine to make a game, and sends you the
source as a keepsake. You’ve officially “made it” as an engine developer.

The game’s Lua is bug-free and functions as-expected when run. No tricks.
Upon inspecting the “resources” folder that represents the game, you find–

circle.png

resources/images

square.png ko.png

resources/actor_templates/player.template

{
 "name": "player",
 "components": {
 "1t": {
 "type":"Transform",
 "x":2
 },
 "2kc": {
 "type":"KeyboardControls"
 },
 "3sr": {
 "type":"SpriteRenderer",
 "image": "circle"
 }
 }
}

resources/actor_templates/enemy.template

{
 "components": {
 "1t": {
 "type":"Transform",
 "x":9, "y":-2
 },
 "2ai": {
 "type":"EnemyAI"
 },
 "3sr": {
 "type":"SpriteRenderer",
 "image": "square"
 },
 }
}

resources/component_types/KeyboardControls.lua

KeyboardControls = {
 OnStart = function(self)
 self.t = self.actor:GetComponent(“Transform”)
 End,

 OnUpdate = function(self)
 if Input.GetKeyDown("up") then
 self.t.y = self.t.y - 1
 end

 if Input.GetKeyDown("down") then
 self.t.y = self.t.y + 1
 end
 end
}

__/9

15

Engine Architecture and Lifecycle Functions

Transform = {
 x = 0,
 y = 0
}

resources/component_types/Transform.lua

resources/component_types/EnemyAI.lua
EnemyAI = {
 OnStart = function(self)
 self.t = self.actor:GetComponent("Transform")
 End,

 OnUpdate = function(self)
 if Application.GetFrame() % 2 == 0 then
 self.t.x = self.t.x - 1
 end

 local player = Actor.Find("player")
 local pt = player:GetComponent("Transform")
 if self.t.x == pt.x and self.t.y == pt.y then
 local psr = player:GetComponent("SpriteRenderer")
 psr.image = "ko"

 local pk = player:GetComponent("KeyboardControls")
 pk.enabled = false

Actor.Destroy(self.actor)
 end
 end
}

16

Engine Architecture and Lifecycle Functions

resources/component_types/SpriteRenderer.lua

SpriteRenderer = {

 image = "",

 OnUpdate = function(self)
 local t = self.actor:GetComponent("Transform")
 Image.Draw(self.image, t.x, t.y)
 end

}

17

resources/scenes/level1.scene

{
 "actors": [

{
 "name": "player",
 "template": "player"
},
{
 "name": "baddie1",
 "template": "enemy",

"components": {
"1t": {

"x": 6,
 "y": -1

}
}

},
{
 "name": "baddie2",
 "template": "enemy",
},
{

 "name": "npc"
}

]
}

Frame #0 (input : none) Frame #1 (input : up)

(0,0)

(7,-3)

Objective
Draw the first 10 frames of the game. Take note of the input, if any.

● The first frame is provided for you below.
● The “initial_scene” is “level1.scene”
● Recall that the “render” is the very last thing to occur in a frame (after all logic).
● Note : The camera is positioned as indicated by the grid and small position texts.

Engine Architecture and Lifecycle Functions

18

Frame #2 (input : up) Frame #3 (input : none)

Frame #4 (input : down) Frame #5 (input : down)

Frame #6 (input : up) Frame #7 (input : none)

Frame #8 (input : up) Frame #9 (input : none)

(0,0)

(7,-3)

Engine Architecture and Lifecycle Functions

19

22 Lifecycle Functions : OnEnteredCameraArea, OnExitedCameraArea

Game designers have begun using your engine to create impressive 2D games.

There is, however, a common request. Game designers want the ability to run
code when an actor enters the camera area, and again when an actor leaves
the camera’s area (ie, when a draw-request associated with an actor enters or
leaves the camera’s rectangle). You aim to please your game designers, and
agree to implement these lifecycle functions such that components like the
following will function in a reasonable way--

__/10

MoveWhenUnseen = {
-- The monster only follows when its draw call is outside the camera rect.
seen_by_camera = false,

 -- Called when we go from out of rect to overlapping / inside rect.
OnEnteredCameraArea = function(self)

self.seen_by_camera = true
end,

-- Called when we go from inside / overlapping rect to totally outside rect.
OnExitedCameraArea = function(self)

self.seen_by_camera = false
end,

-- Auto-called every frame we’re active / enabled (of course).
OnUpdate = function(self)

if self.seen_by_camera == true then
return -- early out. Do not move if visible.

end

-- AI logic to follow the player around, etc etc.
end

}

Fortunately, your engine code is well-structured to support a new feature like this.

Study the next several pages (a simplified version of our standard course engine), as they
contain existing engine files relevant to your task.

Engine Architecture and Lifecycle Functions

20

game_engine_uniqname/src/Actor.h

class Actor
{
public:

...
void Update();
void LateUpdate();

// A function that checks if visibility lifecycle functions should run
// and then runs them if so.
void ConsiderCamLifecycleFunctions(); // TODO : implement this later.

private:
...

// Relevant collections of components for this new feature.
// These are auto-filled for you when components are added to an actor.
std::map<std::string, luabridge::LuaRef> components_with_onenteredcameraarea;
std::map<std::string, luabridge::LuaRef> components_with_onexitedcameraarea;

};

game_engine_uniqname/src/Engine.cpp

void EngineUpdate() // This gets called automatically once per frame.
{

for (auto & actor : Scene::GetAllActiveActors())
actor.Update();

for (auto & actor : Scene::GetAllActiveActors())
actor.LateUpdate();

RenderAllDrawRequests(); // performs all rendering for the frame.
}

Engine Architecture and Lifecycle Functions

21

// A data structure that represents each Image.DrawUI request.
// Use GetRequestForActor() to inspect the current frame’s draw requests.
class DrawUIRequest
{
public:

Actor* requesting_actor // The actor that is being drawn.
int x; // The x pos (in screen-space pixels) of top-left corner of the draw.
int y; // The y pos (in screen-space pixels) of top-left corner of the draw.
int w; // The width (in screen-space pixels) of the draw.
int h; // The height (in screen-space pixels) of the draw.

// Call this function to get the draw request in the current frame for
// a particular actor. Returns nullptr if no request this frame.
static DrawUIRequest* GetRequestForActor(Actor* actor);

};

Objective
Add a very small amount of state to Actor.h and code to Engine.cpp on the previous
page. Then fill out Actor.cpp’s ConsiderCamLifecycleFunctions() on the next page, so to
bring the OnEnteredCameraArea and OnExitedCameraArea Lua lifecycle functions to life.

● Note : All draw requests have an Actor* field now– the actor that is being drawn.
● Tip : View the glossary at the front of the exam for possibly-useful C++.
● We only care about screen-space / UI requests in this problem (no scene-space).

○ ie, you need not worry about any camera movement, zooming, etc.
● This question deals in c++-like pseudo code. Your syntax will be accepted so long

as your intentions and logic are very clear, and it resembles valid c++.
● When an actor comes into existence, consider its initial state “invisible” by default.

○ ie, first frame an actor does a draw request, we call OnEnteredCameraArea().
● These new lifecycle functions should be called after OnLateUpdate() in the frame.
● You may assume any given actor will make one draw request MAX per-frame.
● Recall that in our engines, (0, 0) = top left of window. (width, height) = bottom right.

game_engine_uniqname/src/DrawUIRequest.h

class EngineUtil
{
public:

static int GetCamWidth(); // Returns camera / window width in pixels.
Static int GetCamHeight(); // Returns camera / window height in pixels.

};

game_engine_uniqname/src/EngineUtil.h

Engine Architecture and Lifecycle Functions

22

void Actor::ConsiderCamLifecycleFunctions()
{

}

game_engine_uniqname/src/Actor.cpp

Engine Architecture and Lifecycle Functions

23

Prepared by Maylen Meguri (Donna’s Artist) specifically for the students of 498

23
Name your new engine and draw its logo ->
(you need not keep the name “A2 Engine”)

Engine Architecture and Lifecycle Functions

__/1

